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Abstract. Multivariate Time Series (MTS) is ubiquitous in the real
world, and its prediction plays a vital role in a wide range of applica-
tions. Recently, many researchers have made persistent efforts to design
powerful models. For example, Spatial-Temporal Graph Neural Networks
(STGNNs) have become increasingly popular MTS prediction methods
due to their state-of-the-art performance. However, we found there exists
much unfairness in the comparison of the performance of existing models,
which may prevent researchers from making correct judgments. Mean-
while, researchers usually have to build training pipelines that are com-
plex and error-prone when designing new models, which further obstacles
the quick and deep innovation in the MTS prediction field. In this paper,
we first analyze the sources of unfairness and then propose a fair and
easy-to-use benchmark, BasicTS, to address the above two issues. On
the one hand, for a given MTS prediction model, BasicTS evaluates its
ability based on rich datasets and standard pipelines. On the other hand,
BasicTS provides users with flexible and extensible interfaces to facili-
tate convenient designing and exhaustive evaluation of new models. In
addition, based on BasicTS, we provide performance revisits of several
popular MTS prediction models. The proposed benchmark is publicly
available at https://github.com/zezhishao/BasicTS.

Keywords: Multivariate time series prediction · Unfairness ·
Benchmark

1 Introduction

Multivariate Time Series (MTS) contains time series from multiple correlated
variables and exists in many real-world systems. Accurate MTS prediction fuels a
wide range of services related to intelligent transportation, financial investment,
and environmental protection. It helps people to make better decisions. Thus,
MTS prediction has remained an enduring topic in both academia and industry.
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Despite the significant progress, we find that the evaluation and comparison
of existing models are not fair enough, which may lead researchers to make wrong
judgments and thus hind innovation in the field of MTS prediction. Specifically,
after an exhaustive technical review of existing works, we summarize the sources
of unfairness into three levels: data level, model level, and evaluation level.

Data Level:
Unfairness caused by the lack of richness of the datasets. Different datasets are
often heterogeneous, i.e., datasets have different physical characteristics, dynam-
ics, and so on. Therefore, the same model may have different performances on
different types of datasets. Thus, using only a specific type of dataset for com-
parison may lead to unfair results.
Unfairness caused by data pre-processing. Different normalization methods (e.g.,
max-min normalization, z-score normalization) may affect the model’s perfor-
mance. Therefore, if different models adopt different pre-processing approaches,
the comparison of their performance results is unfair.

Model Level:
Unfairness caused by different pipelines. Pipeline controls many details of the
training process. Since each researcher tends to construct their own model
pipeline, it may bring an unfair comparison of results.
Unfairness caused by hyper-parameters settings. In deep learning-related pre-
diction models, the hyper-parameters have a significant impact on the final
performance, e.g., learning rate, weight decay, random seeds, etc. For exam-
ple, we find that in some works [1,2], the performance of important baselines,
such as DCRNN [3] and Graph WaveNet [4], is surprisingly poor, this may
be caused by unreasonable hyper-parameter settings. Thus, different settings of
hyper-parameters may lead to an unfair comparison of results.

Evaluation Level:
Unfairness caused by different ways of calculating the evaluation metrics. Com-
mon evaluation metrics for MTS prediction problems include MAE, MAPE,
RMSE. Although they have strict mathematical definitions, the implementation
details may vary, such as the way of handling outliers, and mini-batch computa-
tions [5]. These differences can cause significant deviations from test results and
actual performance, thus leading to an unfair comparison of results.
Unfairness caused by different ways of evaluation. For example, in the field of
MTS prediction, the metrics of horizon x denotes the error metrics at the x-th
prediction time step, while many researchers make mistakes and calculate the
average of the error metrics over 0-x prediction time step, which results in a
significant reduction in error and thus significant unfairness.

In order to solve the above unfairness problems and fairly evaluate the perfor-
mance of a given model, we propose a fair and easy-to-use open-source bench-
mark for MTS prediction, named BasicTS. Specifically, BasicTS provides an
exhaustive and fair evaluation of a given model based on a unified pipeline and
rich datasets. In addition, to make it easier for researchers to use, BasicTS pro-
vides a set of rich and extensible interfaces that allows users to focus on model
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design and ignore the building of the training and evaluating pipeline, enabling
rapid development and comprehensive evaluation. Finally, based on BasicTS,
we present a performance review of popular deep learning-based MTS predict-
ing methods, to provide researchers with a solid reference.

Our contributions are summarized as follows:

– We designed a benchmark named BasicTS for solving the unfair compari-
son problem of MTS prediction models. For a given MTS prediction model,
BasicTS utilizes a unified pipeline to perform an exhaustive evaluation of its
capabilities based on rich datasets.

– We designed a set of rich and extensible interfaces in BasicTS, which can help
researchers quickly design and evaluate their own models and be free from
the hassle of building complex pipelines.

– Based on BasicTS, we provide a fair performance comparison of existing pop-
ular MTS prediction models to provide researchers with a solid reference and
thus inspire innovations.

2 Related Works

In this section, we list the existing benchmarks related to time series prediction.
GluonTS [6] is an open-source benchmark designed by Amazon that focuses

on time series prediction. However, it cannot handle datasets with pre-defined
graphs, which limits its usability for STGNN-related models. FOST is a spatio-
temporal prediction framework designed by MSRA. Compared to GluonTS, it
adds a GNN model to ensure its ability to handle data with pre-defined graphs.
However, FOST lacks interfaces for hyper-parameter settings, and it can only
make predictions but cannot evaluate the prediction results, which makes it dif-
ficult to guarantee the fairness of this benchmark. In addition, FOST contains
only three models (RNN, CNN, GNN) and has not designed interfaces to add
new models. Also, its form of input data is fixed, which significantly limits its
extensibility. LibCity [7] is a library specifically focused on traffic-related prob-
lems, which aims to provide experimental tools for researchers. However, it is
not designed for benchmarking and only focuses on traffic-related data, ignoring
many other real-world MTS prediction problems.

Compared with existing works, BasicTS is the first work that provides unified
pipelines and rich datasets for benchmarking given MTS prediction models, and
provides users with extensible and easy-to-use interfaces for quickly designing
and evaluating new models.

3 Benchmark Building

In the Introduction, we analyze the factors that may lead to unfairness. In this
section, we will explore our ideas to solve the above unfairness problems and
propose the specific implementation of BasicTS.
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3.1 Design Thoughts

In this part, we demonstrate the design thoughts of BasicTS, which aims to
address the critical unfairness issues discussed in the Introduction and provide
extensibility for users to enable users adding their models and datasets.

Unfairness. We propose the following solutions to the factors that lead to
unfairness in the field of MTS prediction:

Data Level. For unfairness caused by the lack of richness of the datasets, we
used rich and heterogeneous datasets. Specifically, BasicTS currently includes
ten datasets, including traffic speed datasets (METR-LA, PEMS-BAY), traffic
flow datasets (PEMS03, PEMS04, PEMS07, PEMS08), electricity, solar-energy,
exchange-rate, and Beijing air quality. In particular, in addition to datasets
that include a pre-defined graph indicating spatial dependency, the latter four
datasets, which do not contain a pre-defined graph, can help to evaluate the
model’s capability more comprehensively. For unfairness caused by data pre-
processing, we adopted a uniform data pre-processing process, which takes Z-
Score normalization as default.

Model Level. For unfairness caused by different pipelines, we use an identical,
standard, extensible pipeline to avoid the unfairness problem caused by different
training pipelines. For unfairness caused by hyper-parameter settings, we have
provided interfaces that allow flexible parameter settings and carefully tuned the
parameters of all existing models in BasicTS.

Evaluation Level. We use unified evaluation metrics and pipelines to ensure the
fairness of the evaluation. In addition, to measure the model’s performance at
different prediction lengths, users can evaluate the performance of the model at
any time step less than the length of the prediction.

Extensibility. BasicTS provides researchers with rich, easy-to-use, and extensi-
ble interfaces to configure the standard Pipeline and functions built in BasicTS.
Specifically, for the convenience of researchers, a unified configuration file is
designed to allow users to configure all parameters, such as dataloader, environ-
ment, and parameters to be optimized. Users can configure it by simply editing
them at the string level as if they were filling out a form. In addition, the unified
configuration file imports the model to be evaluated and its runner (optional),
which can be designed at will by simply following the standard input and output
interfaces designed by BasicTS.

The unified configuration profile and extensible interface design allow users
to ignore the construction of the training process and focus on the design of the
model, enabling rapid iteration and effective innovation.

3.2 Implementation of BasicTS

The specific implementation of BasicTS is shown in Fig. 1. Among them, users
communicate with BasicTS through a unified configuration file. In this part, we
will describe the implementation of each module in detail.
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Fig. 1. BasicTS components.
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Data Pre-processing: The data pre-processing module aims to generate a
unified data file for the model. Specifically, the data pre-processing module first
loads the original data for pre-processing (e.g., normalization) and adds addi-
tional features (e.g., time features Time of Day, Day of Week). Then, training
samples are obtained by sliding windows of length P + F over the time series,
where the first P time slices are historical data and the subsequent F time slices
are future data. In particular, to improve flexibility and efficiency, BasicTS stores
the index of the sample instead of the sample itself.

Standard Dataloader: Benefiting from the uniform data storage format gen-
erated by data pre-processing module, this module can read any dataset in a
standard mini-batch way.

Model: In this module, BasicTS specifies the standard input and output inter-
faces. The input interface contains common parameters such as historical data,
epochs number, iteration number, and so on. The model aims to return predic-
tion values. By following the model interfaces specified by BasicTS, users are free
to design arbitrary models, which fully guarantees the extensibility of BasicTS.

Runner: Runner controls the entire training, validation, and testing process,
such as data loader construction, model optimization, evaluation methods, model
saving and loading, log saving, and other details. BasicTS includes a built-in
standard runner to ensure fairness. Users can adjust the standard runner by
modifying the parameters in the configuration file, such as learning rate, weight
decay coefficients, and so on. In addition, we also allow users to customize the
runner in an inherited way.

Evaluation: This module is designed to evaluate the results produced by the
runner. BasicTS currently provides implementations of three widely-used evalua-
tion metrics, MAE, MAPE, and RMSE. BasicTS’s standard runner evaluates the
results on Horizon@3,6,12, overall using the incoming metrics, thus avoiding
the unfairness caused by algorithmic evaluation.

User Interface: Users communicate with BasicTS by configuring the unified
configuration file, which is a python file that maintains an EasyDict object that
allows the user to edit at the string level, like filling out a form. For exam-
ple, users can set BATCH SIZE to set the batch size of the Dataloader and
CFG.TRAIN.OPTIM.TYPE to “Adam” to use Adam as the model’s optimizer.
the unified configuration file allows users to configure almost all parameters
related to Dataloader, such as environment variables, training parameters, and
so on. In addition, users can import their own designed model structure and
custom runner (optional) into the unified configuration file.

4 Evaluation

In this section, we first introduce the setup of our experiments, and then we
illustrate the unfair phenomenon mentioned in the Introduction through exper-
iments. Finally, we provide a fair performance revisit of existing popular MTS
prediction models.
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4.1 Experimental Setup

Datasets: We conducted experiments on ten commonly used MTS predic-
tion datasets: PEMS03, PEMS04, PEMS07, PEMS-08, PEMS-BAY, METR-LA,
Electricity, solar-energy, exchange-rate, and Beijing air quality.

The information of these datasets is shown in Table 1. Traffic-related predic-
tions, such as traffic flow prediction and traffic speed prediction, are the most
common issues of MTS prediction. Among them, PEMS03, PEMS04, PEMS07,
and PEMS08 are traffic flow datasets, while PEMS-BAY and METR-LA are
traffic speed datasets. These datasets contain a pre-defined graph indicating the
spatial dependency between traffic sensors.

However, the MTS problem has a wide range of applications in many fields.
Therefore, we also include four datasets from different areas. They are electricity
and solar-energy for energy, exchange-rate for economics, and Beijing air quality
dataset for environmental protection. Since there are no spatial dependencies
among multiple time series in the applications of these domains, none of these
four datasets contain pre-defined graphs.

Table 1. Information of datasets used in BasicTS.

Dataset Length Variants Sample Rate Time Span Application

PEMS03 26208 358 5 min 3 months traffic flow

PEMS04 16992 307 5 min 2 months traffic flow

PEMS07 28224 883 5 min 3 months traffic flow

PEMS08 17856 170 5 min 6 months traffic flow

PEMS-BAY 52116 325 5 min 6 months traffic speed

METR-LA 6850 207 5 min 4 months traffic speed

Electricity 2208 336 60 min 3 months electricity

solar-energy 52560 137 10 min 1 year energy

exchange-rate 7588 8 1 day 20 years economics

Beijing air quality 6000 7 6 h 1500 days environment

Models: In this part, we briefly introduce the MTS prediction baselines included
in BasicTS. Particularly, we choose MTS prediction models that contain official
public code, which helps researchers to make a quick and accurate comparison
and reproduction.

– HI [8]: Historical Inertia (HI) model adopts the most recent historical data
points in input time series as the prediction results.

– LSTM [9]: Long Short-Term Memory (LSTM) network with fully connected
hidden units is a well-known network architecture that is powerful in captur-
ing sequential dependency.

– DCRNN [3]: Diffusion Convolutional Recurrent Neural Network (DCRNN)
models the traffic flow as a diffusion process. It replaces the fully connected
layer in GRU with a diffusion convolutional layer to form a new Diffusion
Convolutional Gated Recurrent Unit (DCGRU).
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– Graph WaveNet [4]: Graph WaveNet stacks Gated TCN and GCN layer by
layer to jointly capture the spatial and temporal dependencies.

– STGCN [10]: Spatial-Temporal Graph Convolutional Network (STGCN) inte-
grate graph convolution (spatial dimension) and 2D gated temporal convolu-
tion (temporal dimension) to model the correlations in MTS data.

– StemGNN [1]: Spectral Temporal Graph Neural Network (StemGNN) takes
the advantage of both inter-series correlations and temporal dependencies by
modeling them jointly in the spectral domain.

– MTGNN [11]: MTGNN extends Graph WaveNet through the mix-hop propa-
gation layer in the spatial module, the dilated inception layer in the temporal
module, and a more delicate graph learning layer.

– DGCRN [12]: DGCRN models the dynamic graph and designs a novel
Dynamic Graph Convolutional Recurrent Module (DGCRM) to capture the
spatial-temporal pattern in a seq2seq architecture.

– GTS [5]: GTS learns a graph structure among multiple time series and fore-
casts them simultaneously with DCRNN.

– AGCRN [13]: Adaptive Graph Convolutional Recurrent Network (AGCRN)
captures node-specific spatial and temporal correlations in MTS based on
two modules, i.e., node adaptive parameter learning and data-adaptive graph
generation modules.

– STNorm [14]: STNorm refines the high-frequency component and the local
component from the MTS data based on the proposed temporal normalization
and spatial normalization, respectively.

– D2STGNN [15]: D2STGNN decouples the diffusion and inherent signals built
in MTS data to achieve more precise modeling, and features a dynamic graph
learning module for the dynamic characteristics of traffic networks.

Metrics: We evaluated all models by three most widely used metrics in MTS
prediction, including Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and Mean Absolute Squared Error (MSE). In addition, we compared
the performance of these methods on the error metrics at the 3, 6, 12, and overall
prediction time steps, which is shown in the Horizon@3, @6, @12, and overall,
respectively.

Experimental Environment: All models are trained on Intel(R) Xeon(R)
Gold 5217 CPU @ 3.00 GHz, 128G RAM computing server, equipped with
NVIDIA RTX 3090 graphics cards.

4.2 Experimental Results

In this section, we will experimentally demonstrate the unfairnesses mentioned
in the Introduction.

Unfairness Caused by Lack of Richness of the Datasets. Different
datasets often have different properties, e.g., different distributions, different
dynamics, etc. Therefore, even the same model tends to show different per-
formances on different datasets. Here, we select two typical models, GTS and
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Table 2. Comparison of DCRNN and GTS performance on different datasets.

Datasets Models @Horizon 3 @Horizon 6 @Horizon 12 Overall (12 Horizon)

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

METR-LA DCRNN 2.67 5.16 6.86% 3.07 6.29 8.42% 3.57 7.56 10.37% 3.04 6.26 8.33%

GTS 2.75 5.28 7.13% 3.14 6.33 8.70% 3.60 7.46 10.42% 3.10 6.29 8.54%

PEMS-BAY DCRNN 1.31 2.80 2.73% 1.66 3.81 3.75% 1.98 4.64 4.73% 1.60 3.74 3.61%

GTS 1.36 2.91 2.85% 1.72 3.86 3.88% 2.05 4.62 4.87% 1.65 3.77 3.73%

PEMS03 DCRNN 14.16 24.61 14.21% 15.41 27.01 15.07% 17.31 30.05 16.71% 15.37 26.92 15.10%

GTS 13.93 23.96 14.02% 15.27 26.12 15.35% 17.35 29.11 17.23% 15.24 26.08 15.24%

PEMS04 DCRNN 18.53 29.61 12.71% 19.65 31.37 13.45% 21.67 34.19 15.03% 19.71 31.43 13.54%

GTS 19.27 30.46 13.33% 20.86 32.78 14.68% 23.52 36.31 17.03% 20.91 32.86 14.77%

PEMS07 DCRNN 19.45 31.39 8.29% 21.18 34.42 9.01% 24.14 38.84 10.42% 21.20 34.43 9.06%

GTS 20.00 31.87 8.45% 22.11 35.02 9.39% 25.49 39.77 10.96% 22.08 35.07 9.40%

PEMS08 DCRNN 14.16 22.20 9.31% 15.24 24.26 9.90% 17.70 27.14 11.13% 15.26 24.28 9.96%

GTS 14.50 22.97 9.23% 15.77 25.08 10.09% 18.02 28.25 11.74% 15.82 25.13 10.18%

DCRNN, for performance comparison on six different traffic-related datasets we
mentioned above.

As shown in Table 2, The two models have different performances on differ-
ent datasets. DCRNN performs better on METR-LA, PEMS-BAY, PEMS04,
PEMS07, and PEMS08; however, GTS performs better on PEMS03. Therefore,
we introduce 10 datasets in multiple domains to comprehensively measure the
performance of a model on each dataset. In particular, six traffic datasets con-
tain a predefined graph to describe spatial associations; the other four datasets
do not contain predefined graphs. This helps to comprehensively measure the
ability of the model to handle different datasets.

Unfairness Caused by Data Pre-processing. For most machine-learning-
related models, it is essential to perform data pre-processing on the raw data.
Among the pre-processing methods, normalization is the most common means,
which helps to improve the efficiency of gradient descent and enables models
to obtain better results. Common normalization methods include Z-score nor-
malization and max-min normalization. Here, we choose three models, Graph
WaveNet, STGCN, AGCRN to compare the effects of different data pre-
processing methods on the results. The experiments were conducted on the
PEMS-BAY dataset.

Table 3. Effect of different data pre-processing methods on MTS prediction.

Methods Min-max Normailization Z-score Normalization

MAE RMSE MAPE MAE RMSE MAPE

GraphWaveNet 1.56 3.57 3.49% 1.59 3.69 3.52%

STGCN 1.66 3.72 3.70% 1.63 3.73 3.69%

AGCRN 1.69 3.91 3.81% 1.63 3.78 3.73%

As shown in Table 3, The same model may show very different results when
using different data pre-processing methods. Therefore, when comparing results,
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it is crucial to ensure that all models use the same data pre-processing methods.
We provide a convenient normalization processing interface in the data prepa-
ration stage mentioned above, which can fully guarantee fairness in this aspect.

Unfairness Caused by Different Pipelines. Different model pipelines may
likewise lead to an unfair comparison of results. For example, Whether or not
to add gradient clipping to the training pipeline will have a great impact on the
result. Here, we tested the effect of adding gradient clipping to the MTGNN and
STNorm’s training pipeline on the exchange-rate dataset, shown in Table 4.

Table 4. Effect of different pipeline on MTS prediction.

Methods Add Gradient clipping Not Add Gradient clipping

MAE RMSE MAPE MAE RMSE MAPE

MTGNN 0.0133 0.0227 7.05% 0.0130 0.0205 5.45%

STNorm 0.0068 0.0116 1.81% 0.0070 0.0118 2.63%

As shown in Table 4, adding gradient clipping to the training pipeline has
a huge impact on the results. Furthermore, there are also many other details
about pipeline construction, which can also affect the results. Therefore, different
pipelines often bring significant unfairnesses. As described in the Benchmark
Building, we use the same pipeline for all models to circumvent the possible
unfair comparison of results.

Unfairness Caused by Hyper-Parameters Setting. Hyper-parameters set-
ting is an integral part of determining a model’s effect, and there are considerable
works on this.

There is a wide variety of hyper-parameters, including optimizer [16,17],
weight-decay [18], batch size [19,20], and so on. Many of them can significantly
impact the algorithm’s performance. Here, we set up two experiments to show
the effect of the hyper-parameter settings on the model.

Optimizer. Optimizer is one of the most important hyper-parameters in deep
learning models. It refers to the method of finding the optimal deep neural
network parameters through gradient descent, which determines the efficiency
and stability of gradient learning optimization methods. Here, we test the effects
of Adam [16], Adagrad [17], and SGD [21] optimizers on the performance of
model STGCN on PEMS-BAY. The result is shown in Table 5.

Weight Decay. The strong fitting ability of neural networks may lead to over-
fitting. Therefore, it is often necessary to take measures to improve the gen-
eralization ability of neural networks. Weight decay is one of the most com-
mon regularization methods, which improves the generalization ability of neural
networks by introducing a discount factor when the parameters are updated.
Therefore, the coefficient of weight decay is one of the most important hyper-
parameters of the deep learning model. Here, we set the weight decay coefficients
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Table 5. Effect of different optimizers on the performance of STGCN on PEMS-BAY.

Optimizer @Horizon 3 @Horizon 6 @Horizon 12 Overall (12 Horizon)

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Adam 1.35 2.86 2.86% 1.69 3.83 3.85% 2.00 4.56 4.74% 1.63 3.73 3.69%

Adagrad 1.46 3.09 3.07% 1.88 1.98 4.78% 2.41 5.51 5.93% 1.86 4.26 4.26%

SGD 1.67 3.35 3.56% 2.10 4.63 4.57% 2.79 6.33 6.45% 2.12 4.78 4.70%

to 0.00001,0.0001,0.001 to test the effect of the weight decay coefficient on the
performance of model STGCN on PEMS-BAY. The result is shown in Table 7.

Table 6. Effect of different weight-decay coefficients on the performance of STGCN
on PEMS-BAY.

Coefficient @Horizon 3 @Horizon 6 @Horizon 12 Overall (12 Horizon)

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

0.00001 1.37 2.70 2.88% 1.71 3.92 3.83% 2.03 4.70 4.66% 1.65 3.83 3.67%

0.0001 1.35 2.86 2.86% 1.69 3.83 3.85% 2.00 4.56 4.74% 1.63 3.73 3.69%

0.001 1.59 3.35 3.63% 1.92 4.24 4.54% 2.29 5.17 5.47% 1.88 4.21 4.44%

As shown above, hyper-parameters show a considerable impact on the perfor-
mance of the model. Therefore, reasonable parameter adjustment is an important
part of ensuring the fairness of the comparison of the performance of models.
However, the optimal hyper-parameters of different models are often different,
and the adjustment of hyper-parameters still depends largely on artificial experi-
ence. To this end, we provided interfaces that allows flexible parameter settings.
Also, we have carefully tuned the parameters of all existing models in BasicTS
to make them optimal (Table 6).

4.3 Review

In this subsection, we review 11 models on METR-LA, PEMS-BAY, PEMS03,
PEMS04, PEMS07, PEMS08, and Electricity, solar-energy, exchange-rate, and
Beijing air quality. In particular, some models require a pre-defined adjacency
matrix as input, thus these models will not work on the latter four datasets. We
divide reviews into three categories: traffic speed datasets, traffic flow datasets,
and datasets that does not contain pre-defined graph.

For a fair comparison, we follow the dataset division in previous works. The
ratio of training, validation, and test sets for the PEMS-BAY dataset is 7 : 1 :
2, while the ratio for other datasets is 6 : 2 : 2. We aim to predict the future
time series with a length of 12, i.e., F = 12, on all datasets. We compared the
performance of these methods on the 3rd, 6th, and 12th time slots and the
average 12 time slots, which are shown in the @3, @6, @12, and @overall
columns, respectively. The results of the review are shown in Table 7, Table 8,
Table 9.
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Table 7. Review of MTS prediction methods on dataset which doesn’t contain pre-
defined graph.

Datasets Methods @Horizon 3 @Horizon 6 @Horizon 12 Overall (12 Horizon)

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Electricity HI 92.42 167.00 70.16% 92.58 167.05 70.46% 92.79 167.21 70.91% 92.58 167.07 70.43%

AGCRN 22.88 50.02 41.30% 24.49 54.16 48.90% 27.25 59.80 52.57% 23.87 53.00 10.16%

StemGNN 21.43 46.80 35.08% 22.02 49.87 40.00% 26.06 56.99 47.59% 22.75 49.80 39.52%

MTGNN 16.78 36.91 48.17% 18.43 42.61 51.32% 20.51 48.34 56.27% 18.19 42.04 50.77%

STNorm 18.94 40.77 39.10% 21.73 47.70 51.66% 24.62 55.04 66.98% 21.32 47.46 49.49%

Solar Energy HI 7.20 9.65 376.10% 7.20 9.65 376.10% 7.20 9.65 376.10% 7.20 9.65 376.10%

AGCRN 1.48 2.61 101.08% 2.02 3.39 136.36% 2.76 4.50 158.56% 1.98 3.45 125.68%

StemGNN 1.74 2.83 128.85% 2.26 3.62 161.17% 2.88 4.58 183.25% 2.21 3.63 151.21%

MTGNN 1.35 2.41 70.70% 1.81 3.06 107.07% 2.56 4.09 178.68% 1.80 3.13 109.25%

STNorm 0.56 1.58 59.70% 0.77 2.10 101.69% 1.13 2.84 169.64% 0.77 2.14 96.57%

Exchange Rate HI 0.0092 0.0151 1.18% 0.0092 0.0151 1.18% 0.0092 0.0151 1.18% 0.0092 0.0151 1.18%

AGCRN 0.0060 0.0088 4.83% 0.0082 0.0127 2.29% 0.0106 0.0168 2.05% 0.0082 0.0130 3.33%

StemGNN 0.1521 0.1991 179.07% 0.1511 0.1974 199.18% 0.1534 0.1998 192.41 % 0.1549 0.2022 169.47%

MTGNN 0.0133 0.0227 7.05% 0.0167 0.0273 8.30% 0.0184 0.0300 7.34% 0.0164 0.0273 7.70%

STNorm 0.0048 0.0081 0.69% 0.0068 0.0112 1.01% 0.0098 0.0156 2.77% 0.0068 0.0116 1.81%

Beijing Air Quality HI 30.20 57.99 99.54% 30.27 58.03 99.60% 30.24 58.02 99.43% 30.23 58.01 99.47%

AGCRN 30.16 53.60 119.24% 31.41 55.53 130.92% 32.63 58.77 139.12% 30.20 54.14 126.12%

StemGNN 27.02 48.07 143.93% 27.09 48.55 211.92% 26.64 48.55 129.88% 26.65 48.48 151.80%

MTGNN 21.68 42.02 78.52% 25.66 46.39 129.62% 26.24 47.83 120.64% 23.66 44.39 100.39%

STNorm 20.69 39.07 92.66% 23.64 42.63 102.89% 24.26 44.65 99.14% 21.99 41.05 100.28%

Table 8. Review of MTS prediction methods on traffic speed datasets.

Datasets Methods @Horizon 3 @Horizon 6 @Horizon 12 Overall (12 Horizon)

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

METR-LA HI 6.80 14.21 16.72% 6.80 14.21 16.72% 6.80 14.20 10.15% 6.80 14.21 16.72%

Graph WaveNet 2.69 5.15 6.96% 3.08 6.21 8.47% 3.53 7.30 10.15% 3.04 6.15 8.31%

DCRNN 2.67 5.16 6.86% 3.07 6.29 8.42% 3.57 7.56 10.37% 3.04 6.26 8.33%

AGCRN 2.88 5.57 7.72% 3.26 6.61 9.17% 3.67 7.60 10.74% 3.20 6.50 9.00%

STGCN 2.76 5.31 7.20% 3.16 6.36 8.72% 3.62 7.45 10.43% 3.12 6.30 8.58%

StemGNN 2.96 5.77 7.90% 3.46 6.96 9.79% 4.11 8.32 12.25% 3.43 6.93 9.70%

GTS 2.75 5.28 7.13% 3.14 6.33 8.70% 3.60 7.46 10.42% 3.10 6.29 8.54%

MTGNN 2.71 5.22 6.89% 3.07 6.23 8.27% 3.51 7.28 9.90% 3.04 6.17 8.15%

STNorm 2.82 5.55 7.48% 3.19 6.59 9.00% 3.56 7.47 10.51% 3.12 6.45 8.77%

STID 2.79 5.53 7.64% 3.16 6.57 9.30% 3.53 7.51 10.78 % 3.10 6.45 9.01%

DGCRN 2.61 5.02 6.57% 2.99 6.07 7.90% 3.45 7.27 9.49% 2.96 6.05 7.79%

D2STGNN 2.56 4.90 6.52% 2.90 5.90 7.88% 3.34 7.02 9.63% 2.87 5.88 7.79%

PEMS-BAY HI 3.06 7.05 6.85% 3.06 7.04 6.84% 3.05 7.03 6.83% 3.05 7.05 6.84%

Graph WaveNet 1.30 2.80 2.69% 1.65 3.75 3.65% 1.97 4.58 4.63% 1.59 3.69 3.52%

DCRNN 1.31 2.80 2.73% 1.66 3.81 3.75% 1.98 4.64 4.73% 1.60 3.74 3.61%

AGCRN 1.37 2.93 2.95% 1.70 3.89 3.88% 1.99 4.64 4.72% 1.63 3.78 3.73%

STGCN 1.35 2.86 2.86% 1.69 3.83 3.85% 2.00 4.56 4.74% 1.63 3.73 3.69%

StemGNN 1.44 3.12 3.08% 1.93 4.38 4.54% 2.57 5.88 6.55% 1.91 4.46 4.54%

GTS 1.36 2.91 2.85% 1.72 3.86 3.88% 2.05 4.62 4.87% 1.65 3.77 3.73%

MTGNN 1.34 2.84 2.80% 1.67 3.79 3.74% 1.97 4.55 4.57% 1.60 3.70 3.57%

STNorm 1.34 2.88 2.82% 1.67 3.83 3.75% 1.96 4.52 4.62% 1.60 3.71 3.60%

STID 1.30 2.81 2.73% 1.62 3.72 3.68% 1.89 4.40 4.47% 1.55 3.62 3.51%

DGCRN 1.29 2.80 2.74% 1.63 3.80 3.75% 1.95 4.58 4.64% 1.58 3.71 3.61%

D2STGNN 1.25 2.65 2.62% 1.58 3.63 3.57% 1.86 4.37 4.44% 1.52 3.55 3.50%
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Table 9. Review of MTS prediction methods on traffic flow datasets.

Datasets Methods @Horizon 3 @Horizon 6 @Horizon 12 Overall (12 Horizon)

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

PEMS03 HI 32.46 49.78 30.58% 32.45 49.76 30.59% 32.44 49.75 30.63% 32.45 49.76 30.60%

Graph WaveNet 13.37 23.04 13.90% 14.51 25.29 14.85% 16.16 27.91 16.12% 14.48 25.19 14.67%

DCRNN 14.16 24.61 14.21% 15.41 27.01 15.07% 17.31 30.05 16.71% 15.37 26.92 15.10%

AGCRN 14.22 25.02 13.40% 15.47 27.28 14.43% 17.09 28.78 16.43% 15.41 27.15 14.76%

STGCN 14.71 25.19 14.41% 15.66 26.99 15.38% 17.47 29.80 17.55% 15.73 27.03 15.44%

StemGNN 14.16 24.33 14.40% 15.76 26.98 15.32% 18.50 30.94 18.10% 15.87 27.10 15.60%

GTS 13.93 23.96 14.02% 15.27 26.12 15.35% 17.35 29.11 17.23% 15.24 26.08 15.24%

MTGNN 13.71 23.04 14.84% 14.87 25.94 15.12% 16.50 28.76 16.88% 14.80 25.65 15.04%

STNorm 14.23 24.05 13.98% 15.45 26.54 14.49% 17.08 29.42 15.73% 15.34 26.33 14.56%

STID 17.51 28.48 12.00% 18.29 29.86 12.46% 19.58 31.79 13.38% 18.29 29.82 12.49%

DGCRN 13.46 23.92 14.23% 14.67 26.36 15.13% 16.41 29.02 16.71% 14.61 26.15 15.10%

D2STGNN 13.42 23.11 13.71% 14.71 25.61 14.73% 16.62 28.69 16.64% 14.72 25.61 14.70%

PEMS04 HI 42.33 61.64 29.90% 42.35 61.66 29.92% 42.38 61.67 29.96% 42.35 61.66 29.92%

Graph WaveNet 18.00 28.83 13.64% 18.96 30.33 14.23% 20.53 32.54 15.41% 18.97 30.32 14.26%

DCRNN 18.53 29.61 12.71% 19.65 31.37 13.45% 21.67 34.19 15.03% 19.71 31.43 13.54%

AGCRN 18.52 29.79 12.31% 19.45 31.45 12.82% 20.64 33.31 13.74% 19.36 31.28 12.81%

STGCN 18.74 29.84 12.93% 19.64 31.34 13.27% 21.12 33.53 14.22% 19.63 31.32 13.32%

StemGNN 19.48 30.74 13.84% 21.40 33.46 15.85% 24.90 38.29 19.50% 21.61 33.80 16.10%

GTS 19.27 30.46 13.33% 20.86 32.78 14.68% 23.52 36.31 17.03% 20.91 32.86 14.77%

MTGNN 18.65 30.13 13.32% 19.48 32.02 14.08% 20.96 34.66 14.96% 19.50 32.00 14.04%

STNorm 18.28 29.70 12.28% 18.92 31.12 12.71% 20.20 32.91 13.43% 18.96 30.98 12.69%

STID 17.51 28.48 12.00% 18.29 29.86 12.46% 19.58 31.79 13.38% 18.29 29.82 12.49%

DGCRN 17.88 29.12 12.25% 18.86 30.92 12.85% 20.20 33.20 13.80% 18.81 30.82 12.80%

D2STGNN 17.44 28.48 11.91% 18.20 29.91 12.29% 19.31 31.68 12.99% 18.15 29.80 12.25%

PEMS07 HI 49.02 71.15 22.73% 49.04 71.18 22.75% 49.06 71.21 22.79% 49.03 71.18 22.75%

Graph WaveNet 18.69 30.69 8.02% 20.26 33.37 8.56% 22.79 37.11 9.73% 20.25 33.32 8.63%

DCRNN 19.45 31.39 8.29% 21.18 34.42 9.01% 24.14 38.84 10.42% 21.20 34.43 9.06%

AGCRN 19.31 31.68 8.18% 20.70 34.52 8.66% 22.74 37.94 9.71% 20.64 34.39 8.74%

STGCN 20.33 32.73 8.68% 21.66 35.35 9.16% 24.16 39.48 10.26% 21.71 35.41 9.25%

StemGNN 19.74 32.32 8.27% 22.07 36.16 9.20% 26.20 42.32 11.00% 22.23 36.46 9.20%

GTS 20.00 31.87 8.45% 22.11 35.02 9.39% 25.49 39.77 10.96% 22.08 35.07 9.40%

MTGNN 19.23 31.15 8.55% 20.83 33.93 9.30% 23.60 38.10 10.10% 20.94 34.03 9.10%

STNorm 19.15 31.70 8.26% 20.63 35.10 8.84% 22.60 38.65 9.60% 20.52 34.85 8.77%

STID 18.31 30.39 7.72% 19.59 32.90 8.30% 21.52 36.29 9.15% 19.54 32.85 8.25%

DGCRN 18.57 30.49 7.82% 20.12 33.43 8.45% 22.31 37.04 9.44% 20.05 33.32 8.45%

D2STGNN 18.56 30.52 7.79% 20.10 33.15 8.41% 22.30 36.73 9.40% 20.05 33.08 8.42%

PEMS08 HI 36.65 50.44 21.60% 36.66 50.45 21.63% 36.68 50.46 21.68% 36.66 50.45 21.63%

Graph WaveNet 13.72 21.71 8.80% 14.67 23.50 9.49% 16.15 25.85 10.74% 14.67 23.47 9.52%

DCRNN 14.16 22.20 9.31% 15.24 24.26 9.90% 17.70 27.14 11.13% 15.26 24.28 9.96%

AGCRN 14.51 22.87 9.34% 15.66 25.00 10.34% 17.49 27.93 11.72% 15.65 24.99 10.17%

STGCN 14.95 23.48 9.87% 15.92 25.36 10.42% 17.65 28.03 11.34% 15.98 25.37 10.43%

StemGNN 14.49 23.02 9.73% 15.84 25.38 10.78% 18.10 28.77 12.50% 15.91 25.44 10.90%

GTS 14.50 22.97 9.23% 15.77 25.08 10.09% 18.02 28.25 11.74% 15.82 25.13 10.18%

MTGNN 14.30 22.55 10.56% 15.25 24.41 10.54% 16.80 26.96 10.90% 15.31 24.42 10.70%

STNorm 14.44 22.68 9.22% 15.53 25.07 9.94% 17.20 27.86 11.30% 15.54 25.01 10.00%

STID 13.28 21.66 8.62% 14.21 23.57 9.24% 15.58 25.89 10.33% 14.20 23.49 9.28%

DGCRN 13.47 21.87 8.85% 14.44 23.77 9.44% 15.90 26.35 10.50% 14.43 23.75 9.40%

D2STGNN 13.24 21.83 8.47% 14.19 23.98 9.09% 15.50 26.43 9.90% 14.20 23.95 9.10%
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5 Conclusion

In this paper, we propose a fair, standard, and open-source benchmark for mul-
tivariate time series prediction, named BasicTS, to address the unfairnesses in
the comparison of MTS prediction models. Given a model, BasicTS evaluates
it based on rich datasets, standard training pipeline, and standard evaluation,
to give a fair performance validation. Furthermore, BasicTS provides users with
flexible and extensible interfaces to facilitate quick designing and fair evaluation
of new MTS prediction models. Last but not least, we also provide a fair perfor-
mance review of several popular MTS prediction models based on BasicTS.

6 Future Works

This paper explores and evaluates the unfairness of the MTS prediction and
proposes a framework dedicated to the MTS prediction problem. In the future,
we will continue this research in three aspects:

1. MTS prediction problems contain a wide variety of methods and data forms.
We plan to add more datasets and models into BasicTS. We will also conduct
more experiments on these datasets.

2. The MTS prediction models also include some long-time prediction models.
We plan to add more long-time prediction models into BasicTS.

3. With the development of machine learning, auto hyperparameter optimiza-
tion techniques are beginning to be used more and more abundantly. We
plan to add auto hyperparameter optimization technology into our bench-
mark, which can help researchers to find optimal parameters for deep learning
models conveniently.
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